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A new kinetic theory that is close to dynamic processes is constructed. A system ofM integro-differential equations and a system 
of M partial differential ,=quations are obtained. The theory is demonstrated using the examples of the calculation of the structure 
of intense shock-waves and by calculating turbulent flows in a plane channel. It is shown that the theory of the structure of high- 
intensity shock-waves ,~,rees with remarkable accuracy with numerous experimental data. Calculations of turbulent flow 
approximate quite well to experimental data, but it is remarkable that a single theory can describe both the turbulent core at 
the centre of the chanm;l and the laminar sublayer on the wall so well. © 1997 Elsevier Science Ltd. All rights reserved. 

The kinetic theory of gases was founded at the end of the last century by Boltzmann. Using the laws 
of classical mechanics and qualitative intuitive ideas he obtained the famous integro-differential kinetic 
equation. The first approximate solutions were given by Boltzmann himself. He verified the-hydro- 
dynamic equations taking viscous friction into account. 

The basic ideas of Boltzmann's kinetic theory were subject to serious criticism by scientists (his 
contemporaries), w]hich he could not convincingly refute. Loschmidt first pointed out the symmetry of 
the laws of mechank~ with respect to the past and the future; this symmetry does not exist in Boltzmann's 
kinetic theory. 

To obtain the kinetic equation Boltzmann assumed the hypothesis of molecular chaos, which still gives 
rise to doubts related to the following facts. 

In strictly elastic collisions between molecules all the conservation laws are satisfied, and at the molecu- 
lar level an ordered distribution of correlated velocities is formed. Hence, the integrands in Boltzmann's 
theory are themselves invariant under elastic collisions; we cannot include the idea of chaos here. 

Zermelo drew attention to Poincar6's theorem, according to which a system of material particles has 
a quasi-periodic forra of motion. Boltzmann had carried out the proper  calculations for a set of particles 
in 1 cm ° under normal conditions. For reasonable requirements on the accuracy of recovery, this is 
justified, but the required recovery time will be enormous. The quasi-periodicity is proved. Hence, 
recovery is only justJified when there is no chaos. 

In our time the leading scientists of the world N. N. Bogolyubov et  al. ,  using rigorous mathematical 
methods, have derived the Boltzmann equation from Liouville's equation without invoking the hypothesis 
of  molecular chaos. 

Boltzmann also showed that the entropy of matter in a closed volume increases, while its ability to 
do work decreases---matter tends to chaos and to thermal death. Boltzmann also put forward the so- 
called fluctuation hypothesis, which introduced some calm, but could not entirely satisfy his opponents. 

The fundamental propositions of Boltzmann's theory have received fundamental theoretical 
developments and justifications in the present century. 

1. At the beginning of the century several different methods of solving the Boltzmann equation were 
put forward by Hilbert [1], Chapman-Enskog [2, 3] and also by Grad [4] and others with numerous 
modifications. These methods led to different expressions when solving the same problems, but, as a 
rule, the results obtained were identical and physically clear. 

2. In the middle of the present century there was increased interest in the kinetic theory of gases 
throughout the world, due to the rapid development of high-speed aviation and space techniques. In 
1946 Bogolyubov [5], Born and Green [6] and Kirkwood [7], practically simultaneously, published 
fundamental results in the kinetic theory. 

Starting from Liou~rille's equation and the various kinetic equations that follow from it, these scientists 
succeeded in obtaining the Boltzmann kinetic equation strictly mathematically. 
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In [8, 9] we also derived the Boltzmannkinetic equation from Liouville's equation taking into account 
a singular integral form of the interaction, not inherent in classical mechanics, since the molecules behave 
here as non-localized particles. By considering this integral form of interaction it was possible to construct 
a rigorous irreversible solution of the chain of kinetic equations and to derive the Boltzmann kinetic 
equation. A consideration of this integral form of the interaction in fact indicates that the distribution 
function of the probability of finding particles in a six-dimensional phase space depends differently on 
fast and slow time. 

In addition, we showed that Hilbert's method does not enable a correct solution of the Boltzmann 
kinetic equation to be constructed [10, 11], and a new more general method of solution was proposed 
[12] compared with those obtained in the publications mentioned above. In this method the fact that 
the distribution function depends both on fast and slow time is taken into account. This method is in 
fact based on the ideas of Poincar6's method [13]. 

It has become clear from the above theoretical investigations that during the last century the distin- 
guished scientist Boltzmann succeeded in obtaining the kinetic equation for gases and the equations 
of hydrodynamics which follow from it, which were given a rigorous theoretical basis in the twentieth 
century. 

3. Moreover, Boltzmann obtained kinetic equations for gaseous mixtures describing the motion of 
the individual components of the gas. For an M-component gaseous mixture this kinetic equation was 
written in the form 

M dfs=l ~ JfJ (f~fs-fxfs)q~sbdbd~v,= ~, l(fJs ) (I) dt e x=l x=t 

wheref~(t, r, v) = fs is the probability distribution function of the sth component of the mixture in six- 
dimensional phase space q= is the initial relative velocity of these molecules, b is their impact parameter, 
1/e is a measure of the collision frequency, and e is a small quantity. The distribution function can be 
expanded in the parameter 

fs(t,r, v) = f:°>(t,r,v)+ef~l)(t,r,v)+e2f:2)(t,r,v)+... (2) 

In the first half of the present century the same Chapman-Enskog method [2] was used to solve the 
system of Boltzmann kinetic equations. 

To solve the system of kinetic equations using this method for gaseous mixtures in th~ zeroth 
approximation it was found to be necessary to require that the sum of all the collision integrals in the 
zeroth approximation should be zero, which follows from (1) and (2) 

M 1(f; : )=0  
"C=I 

This meant that the kinetic theory could only describe the motion of the gaseous mixture as a whole 
and could only determine the mean-mass parameters of the flow, while the motion of individual 
components in the Euler approximation remain completely undetermined, which also follows from well- 
known results. 

4. Only at the beginning of the 1970s in Akademgorodok, Novosibirsk, was the problem of separating 
gaseous mixtures keenly pursued, but no theory existed, and we were therefore forced to develop a 
new method of solving the kinetic equation for a gaseous mixture. To describe the motion of a given 
component of a gaseous mixture successfully it must have its own integral equation with its own inherent 
integral kernel, whereas for the other components the integral kernels must be taken into account in 
the subsequent approximation. 

The integral equation for a gaseous mixture was therefore written in the form 

In this case it turned out to be possible to determine the partial parameters for each component 
of the flow, while the zeroth approximation was also written only for the main component of the 
mixture 

l( f~°', fs(°) ) = O (4) 
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This method was presented in 1971 at seminars at the Moscow Institutes of the Academy of 
Sciences of the USSR and at Moscow University. In 1972 it was reported at the Eighth International 
Congress on Theoretical and Applied Mechanics in Moscow [14], and it was published in 1974 [15]. 
The method enables the motion and separation of multicomponent gaseous mixtures in tubes, 
channels and diffusors to be described, and also enables the motion of a dust-like catalyst in chemical 
engineering apparatus to be determined theoretically. Calculations were carried out in [16], while a 
modification of the Chapman-Enskog method for a two-temperature binary gaseous mixture was 
presented in [17]. 

The method of :solving the system of Boltzmann equations for gaseous mixtures which we proposed 
enables the mean partial parameters of the flow (the density, velocity and temperature) to be determined 
for each component of the gaseous mixture 

PR,P2 ..... PM; ul,u2 ..... u u ;  TI,T 2 ..... T~ 

From these partial parameters of the flow one can obtain, by simple summation, the mean-mass 
parameters, i.e. one can obtain the Chapman-Enskog solution. 

In the publications mentioned above a multiparametric system of gas-dynamic equations 

3us a +us~ aos a 1 ap, 16 (|1) 
. . . .  (5) 

ar arl~ p~ ar~ 3p~ ~ m~ + m~ 

• i9~ 2 _ a u s  a 16 r.~e~'-~s ~~mff3~k(Tx-Ts)+qt"(v~-v")2] 
a t ,  = - -  ° ° o " "  

(6) 
at ara 3 ar e 3 ~,~s m~ + m s 

ap, k = 0 (7) 
at ar~x 

was obtained for the first time, where qr, (msTs)/(T~ + Ts) and 0 (11) = --ra are tabulated integrals. 
Here an important form of interaction between high-speed fows va~ - v~ was revealed for the first time, 
which plays a decisive role in science. 

Investigations carried out in the twentieth century showed that the overwhelming majority of aero- 
dynamic flows can be described completely satisfactorily by the Euler and Navier-Stokes equations, 
and also by the equations of multicomponent gas dynamics [15]. 

5. In the last century Boltzrnann was so occupied with the law of the change of entropy of systems 
that we must touch on this problem at least briefly. 

Starting from his kinetic equation, he showed that the entropy in closed volumes increases dS/dt >i 
0 and that the universe is approaching a thermal death. This proposition gave rise to some doubts and 
objections. To meet these objections Boltzmann put forward, as we have already noted, the so-called 
"fluctuation hypothesis", i.e. entropy fluctuates with time. A positive fluctuation dS/dt > 0 is followed 
by a negative fluctuation dS/dt < O. 

However, on the Earth, in our solar system, and in our galaxy, entropy cannot decrease, and dissipative 
processes take place intensively here. 

At the same time, in the universe dusters of matter have been formed in which energy is stored but 
entropy decreases. The possibility that such formations can occur in the universe was predicted by 
Laplace. Rigorous theoretical results were obtained by Schwarzschild in 1916 on the basis of exact solu- 
tions of Einstein's equations for symmetrical cases. It was not until 1963 that Kerr succeeded in finding 
a solution for the Schwarzschild problem for the gravitation field of a rotating "black hole". Hence, it 
has been shown that material regions can exist in the universe with a different power source and different 
laws of variation of entropy. 

For a speeified r, zgion of outer space we will have dS/dt ~ O. 
Then, in our solar system and in our galaxy for a region without "black holes" dS/dt > 0, which follows 

from the given muitiparametric kinetic theory, whereas in the Boltzmann theory dS/dt >>- O. 
6. During the twentieth century the methods of kinetic theory of matter were used to solve the 

overwhelming majority of aerodynamic problems and were highly effective. At the same time, a number 
of important aerodynamic problems were not understood and were not solved using the kinetic theory 
and the Navier-Stokes equations. 

This applies to the following problems. 
The structure o f  high-intensity shock-waves. Prandtl worked on this problem at the beginning of this 

century and was the first to encounter insurmountable difficulties. Calculations based on the Navier- 
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Stokes equations differed considerably from experimental data. Similar results were obtained by 
Mott-Smith and others. 

Turbulent flows of  a liquid, and a gas. Reynolds, towards the end of the last century, on the basis of 
the simplest experiments using coloured liquid jets, concluded that turbulence in a flow is produced as 
a result of a loss of stability of the initial laminar flow. Using this idea Reynolds [18] distinguished all 
the flow parameters in the mean and under pulsation conditions. Throughout the twentieth century 
the problem of turbulence has occupied the leading scientists of the world: Prandtl, Karman, Heisenberg, 
Landau, and others. 

Knudsen layers. Considerable difficulties arise when investigating thin Knudsen layers, which have 
several chaotic zones, which are not intermixed with one another. The thickness of these layers is less 
than the mean free path of the molecules. 

Leading scientists of the world have expressed numerous points of view and specific proposals on 
these problems. The overwhelming majority of these have turned out to be largely ineffective. 

In the 1950s in the U.S.A., the director of NASA constructed the first turbulence-free tube. Later, 
the director of the Institute of Mechanics of the Siberian Branch of the Academy of Sciences in 
Novosibirsk constructed the first turbulence-free tubes in the U.S.S.R. and conducted the first 
investigations. Tests on a flat plate in turbulence-free tubes led to a sharp increase in the critical Reynolds 
number to 3 x 10 6, whereas the stability limit in practice remained as before, namely, 6 x 104. There 
was an enormous transition region. No pulsations were observed in the front half of this region. In the 
rear half oscillations of considerable amplitude were observed, which increased as the transition point 
was approached. The complex pulsations that appeared in the transition zone indicate that spatial 
phenomena may serve as a basis for a new treatment of the transition problem. 

It can be seen from the above material that the simple separation of the gas motion into small oscilla- 
tions of an unstable nature and certain average (Reynolds) motions cannot be regarded as justified. In 
each specific case an exact treatment of the turbulence problem must exist on its own, but so far no 
such formulations have yet been obtained. 

At the same time, there is a large class of various turbulent flows which are of considerable importance 
for mankind. In the middle of the present century these flows were investigated experimentally by 
Nikuradze [19] and by others. In particular, he showed that in circular tubes the velocity profile does 
not change along a length of many tens of bores. This most important result may, in particular, facilitate 
the solution of the turbulence problem. We will also use it later. But we must not oversimplify it. The 
complex perturbations that occur in the transition zone are certainly sustained along the whole length 
of the channel. 

Problems of the structure of shock-waves and turbulent flows have not been solved within the 
framework of classical theory, which clearly does not embrace dynamics. 

The kinetic theory is closer to thermodynamic processes. Even Boltzmann had dS/dt >! O. Hence, striking 
dynamic processes (shock-waves, turbulence, etc.) were difficult to explain by classical kinetic theory. 

It follows from the above that to make any progress in the area of unsolved problems in mechanics 
we must: (1) make kinetic theory approximate to dynamics, and (2) we must direct the theory of these 
processes towards the use of a set of distribution functions. 

To solve these problems we have used the possibility of employing Liouville's equation, which describes 
the dynamic property of systems when they are combined with a large thermostat. Liouville's equation 
will then be capable of describing the widest range of dynamic, gas-dynamic and statistical processes. 

If at the initial instant the distribution function of the probabilities of particles residing in six- 
dimensional phase space is specified, Liouville's equation will be exactly equivalent mathematically to 
the initial Hamilton equations. 

Gibbs also used a combination of a dynamic system with a thermostat and thereby obtained a micro- 
canonical distribution. 

If a dynamic system resides for a certain time in a large thermostat with a specified property, 
distributions corresponding to it will be obtained in the dynamic system. 

We draw attention to the fact that by proceeding from Liouville's equation and using corresponding 
thermostats, we are able to describe the following dynamic, kinetic and statistical systems: a dynamic 
Hamilton system, the multiparametric system of the author, Boltzmann's kinetic system, and Gibbs's 
statistical system. 

The two penultimate cases are limiting states of the kinetic theory, when the most stable, two-particle 
and single-particle distribution functions are preserved. All the remaining distribution functions have 
already decayed. 

The dynamic Hamilton system. We will first consider a purely dynamic system consisting of N different 
particles. We will write their probability distribution functions in six-dimensional phase space in the form 
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F # - -  .. . . .  x # )  (8) 

These probability distribution functions will satisfy Liouville's equation and will differ from one another 
solely in the initial data. They will be asymmetrical functions with respect to the permutation of any 
pair of dynamic coordinates (a Hamilton system). 

Gibbs's statistical system. We will now consider another limiting case: an ensemble consisting of N 
identical particles, the distribution functions of which also satisfy Liouville's equation and differ from 
one another solely in the initial data. If these ensembles have interacted for a long time with a certain 
thermostat, they will differ only slightly from one another and will be described by a symmetrical 
distribution function 

-- r (0, t, . . . . .  (9) 

On the molecular level in the whole system, as Gibbs showed, the distribution function will be 
symmetrical with respect to a permutation of the dynamic coordinates, it does not depend on time, and 
can in this case be represented in the form 

F s = FN exp(-E / (kT)) (10) 

where E is the system energy, and the change in entropy is zero. 
The Boltzmann ldnetic system. We will now consider a set of ensembles of N identical particles which 

are described by a set of asymmetrical distribution functions (8), which also satisfy Liouville's equation 
and differ from one another solely in the initial data. If this ensemble of N particles has interacted 
elastically with a certain thermostat and the particles can mix strongly with one another, the mean flow 
parameters (the density, velocity and temperature) will be preserved in the system at the macroscopic 
level. At the molecular level an ordered distribution of the molecular velocities will be established in 
the  whole system. The distribution function will be symmetrical 

N 
F# = l'I q~k(x-a) (11) 

k = l  

The system will have exactly N single-particle distribution functions fs = (N/V)~h(x), where V is the 
volume of the system. 

This case was cc,nsidered by Boltzmann. The single-particle functions satisfy the kinetic equation 

df  d'~ - JSS (f'fl" - ffl )qbdbdedvl (12) 

obtained by Boltzmann's method corrected above. 
The author's mul,~parametric system. We will now consider a set of ensembles consisting of N identical 

particles which is described by a set of asymmetrical distribution functions (8), which satisfy Liouville's 
equation and differ from one another solely in the initial data. If these ensembles of particles only interact 
elastically for a certain time with a simple thermostat, the system will be only slightly mixed and the 
distribution function will only be partially symmetrical. At the macroscopic level certain numbers of 
mean parameters (the densities, velocities and temperatures) will be preserved in the system. The 
distribution function will have the form 

Fu :~I 9,(xs)leI tp2(xk).-.fl tp,(x,)... (13) 
.~=1 k=l t=l 

wherel  + p  + . . .  + ~ + . . . M  < N. 
The multiparticle, but identical, functions form a group 

f~ = n,tp~(xt) 

This dynamic syslLem is characterized by the following set of particle functions. The number M at this 
level of consideration remains unknown. It is defined in the physical formulation of the problem itself. 
The particle functions satisfy a system of kinetic equations, obtained above using the corrected 
Boltzmann method. Bogolyubov's method for multicomponent systems has not yet been developed. 
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The particle functionsf,(t, r), just like for multicomponent gaseous systems, will satisfy the following 
multiparametric system of kinetic equations 

This system is similar in its superficial form and mathematical content to the system of kinetic equations 
for gaseous mixtures of M flows. However, there is nothing in common between the systems as far as 
the physical basis is concerned. This system of equations was first obtained in our papers before 1980 
when setting up the distribution function of groups of molecules [21] and is quite often encountered 
in publications by others. 

The values of p”, are known in problems on gaseous mixtures. We also know the number M. In the 
problems considered the values P: and A4 are unknown and must be defined in the physical formulation 
of the problem. Solving the multi-parametric system of kinetic equations using our method [15], we 
obtain the following multiparametric system of gas-dynamic equations 

aup+u fix 
at 

; 1 a~,, _ 16 M P;P:Q? 
c 

’ ar, p: ar, 3p, TfS m, +m, 
(c -4 

(15) 

The system of M equations of the generalized multiparametric gas-dynamic theory of matter of the 
twentieth century looks like this. 

As can be seen, a system of M mutually connected partial differential equations has been obtained, 
where p: and the number M are, in general, unknown. They are delined in the physical formulation of 
the problem [20,21]. 

7. We will use the multiparametric fluid-dynamic equations to describe the structure of a steady shock- 
wave. In this problem we will have two groups of molecules. The subscript one will relate to the group 
of molecules in front of the shock-wave and the subscript two will refer to the group of molecules behind 
the shock-wave. 

If instead of the kinetic equation (14) or instead of the system of differential equations (15) we can 
use their conservation integrals, this will be the most important achievement. 

From (15) we obtain the following equations for a one-dimensional steady wave: the equations of 
conservation of mass, angular momentum and total energy, and the equation for the thermal energy 
of the whole system 

SCP IV1 +Pzu2)=0* -f-(PI4 +PI +P& +p2)=0 

if PI4 

i 

5 P24 5 

- -+5P’u’ +- 1 
=o 

ak 2 2 
+3.p2u2 

$$ p,u,T, +w,T,)+pWi 2 + p2kT2 du, - 
ah 1 

=$p,p2n’,:“(u, -u2)2Y 

where Y is a certain function of the flow parameters. 
The system contains variables which relate to different groups of molecules pl, p2, vl, v2, Tl, T2, where 

p is the density, v is the velocity and T is the temperature. 
In this theory the flow is formed from groups of molecules. The first group exists in front of the 

compression jump, its density is specified, while behind the jump pi(x) = 0, and for the second group 
p&x) = 0 in front of th e jump. These quantities are the boundary conditions for the problem in question 
on the structure of intense shock-waves. 

In shock problems, as we know, the density and other parameters of the flow are specified at the 
shock front, and alI the parameters behind the shock are calculated from the Rankin-Hugoniot relations. 

In the problem considered here on the structure of high-intensity shock-waves, the boundary conditions 



Kinetic theory of gases in the twentieth century 965 

enable us to detelrmine the change in the gas density using Eqs (16). The quantities i,'1, 1,'2, Z 1 and T2 
are taken to be constant. The ratios v2]vl and T2/T1 can be found from the condition for the first three 
equations of (16) to be compatible from the formulae 

,,:+3 
u t 4M 2 , TI I6M 2 

We will now introduce the mean parameters of the flow, which characterize the system as a whole 

p0c)=pJ(x)+ p2(x), u(x)= Plul +p~u~, T(x)= Pt(x)~ +p~(x)T~ 
P~ +P2 P~ +P2 

To determine pl(x) and p2(x) we will have 

d o,p,(x)+u2p2(x)=c,, ~(p, ul~:~ +P2u21cT2):16p,p2fl}~'~(u,-u2)2~ 
9 (17) 

Assuming 

Yl = pl(x), Y2 =p~(x) 
P - .  P- .  ' 

we obtain 

uly  I +u2y 2 =Or, dY.----.!~l = Adx (18) 
Yt (1 - Yl ) 

whereA and W are complex functions of the flow parameters, independent of the coordinates. Solving 
system (18) we obtain 

p _ .  p _ .  O 1 
p,(x)= l+e_,U, P2(x) =l+e+,t  'u2  (19) 

Following Prandtl, we define the shock-wave thickness 

P ' I ' ~  ~ p--oo 
s= (ap/ax) , 

We will denote llhe ratio of the mean free path Z, to the shock-wave thickness 8 by.f(M). We can only 
determine this qu~mtity L/8 = f(M) in specially set-up experiments. 

Figure 1 (see also [22-24]) shows a graph of ~V6 against the Mach number. 
Proceeding as in Schmid's paper [25] and using his notation, we show in Fig. 2 the change in the nor- 

malized density pN(x) over the width of the jump, where P2 and Pl are the values of the density at _+** 

pN(x) = p(x)- Pl (20) 
P2 - P l  

When solving the problem of the shock-wave structure we ignored the effect of the viscosity and the 
thermal conductivity. It is primarily necessary to take into proper account the effect of these terms in 
the equations themselves (see [15]). 

8. We will use the multiparametric kinetic theory to describe turbulent flows in a plane channel. We 
will first write Eqs (115) for the steady one-dimensional flow of an incompressible viscous fluid in a channel 
y = _h between two parallel planes 

+ ) 
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~Z 
D 
~V 

I 5 J M -.5" 0 5 .z-/~ 

Fig. 1. Fig. 2. 

a, ) g = . .  

aUsax k =0; t2~ = 3 "-~ 

(21) 

Here f ~  are integrals, given and partially tabulated in [2, 3]. For one-component gases the value of 
D~ are constant quantities. Hence, we will use the standard arithmetic-mean law of averaging the 
parameters of the flow. 

In this paper the viscous terms in Eqs (21), as in [21], are written in classical form, ignoring, for the 
present, any large correction (see [15] and other papers by the author on this issue). 

As a result of a comparison of theory and experimental data it became clear that in turbulent flow, 
friction at the channel walls is greater than the theory predicts. Hence, the large correction to the viscous 
terms mentioned above, which increase the friction forces and their role [15], must henceforth be taken 
into account in the theory. 

We will introduce averaging of the flow parameters over their set of possible values 

1 u 1 u 1 M 

We can then naturally introduce a set of deviations from the mean parameters of the flow (denoted 
by an asterisk) rather than the set of pulsation, as it was from 

Us=U'+U~, us=ff'+u :, ps='ff+p*s (23) 

It can be seen that the sums in Eqs (21) take the form 

M , x {uL,=-MU;, (24) 

Substituting (24) into (21) and carrying out the averaging, we obtain the following system of equations 
for the mean parameters of the flow 

p ! , T  + p T * - - - g -  (25) 
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a~/ax+ao-/~ =o 

This system can be simplified considerably for the one-dimensional problem considered 

(26) 

The system of equations for the deviations of the mean parameters of the flow has a more complex 
form than (25). However, for simplifications of the one-dimensional problem it can be reduced to the 
form 

d2U~ lop* d2v~ 2 * 10p* dU~ dr; 
dY 2 -k2U~ =t J- 3x' dY 2 - k  v s = , I- =0 (27) ~ti3y dx dy 

where k 2 = M/I x is found by comparing a series of theoretical calculations with experimental data. 
The system of equations (27) turned out to be still quite complex. Hence, the values of the deviations 

of the flow parameters are determined approximately. Using these one can calculate the mean turbulent 
velocity of the flow in a channel from Eq. (26). 

Hence, in this paper we have considered a number of dynamical and statistical systems in general 
form and we have :ghown that one can construct an extremely non-uniform kinetic theory which should 
now operate with a set of M single-particle distribution functions which satisfy the multiparametric system 
of M kinetic equations (14). This system of kinetic equations has been reduced, by a method similar 
to that described earlier [15], to a multiparametric system of M partial differential equations (15). 

The new theory has been used to calculate the shock-wave structure. 
A comparison of the theorywith experiment has exceeded all expectations. As can be seen, the shock- 

wave thickness agrees with experiment over a wide range of Mach numbers with remarkable accuracy 
(Fig. 1). This is also confirmed by a comparison of the theory with experiment for the density distribution 
across a channel (Fig. 2). 

Calculations of the distribution of the turbulent velocities in a plane channel agree well with 
experimental data J~or the axial section of a circular tube (see Fig. 3, where the curve with the dark points 
represents Nikuradze's experiment [19], the curve with the crosses represents the calculation of the 
turbulent flow, whiile the curve with the small circles represents laminar flow). 

I--  

,r 
,4' 

Fig. 3. 
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Viscous friction, according to experimental data, turns out to be somewhat greater than in theory. 
Hence, corrections to the viscous terms in Eqs (15) must be made afterwards. 

At the same time,, we can only be amazed that the theory simultaneously correctly describes the 
structure of the turbulent core at the channel centre and also quite correctly the laminar sublayer on 
the channel wall. 

In Fig. 3 we show the changes in the relative value of the turbulent velocity of the flow with respect 
to its value at the tube centre. To determine the true values of the parameters of turbulent flow one 
must start from Eqs (21), into which one mus t introduce bulky expressions for viscous friction, calculated 
in [15] or other papers we have written on the same issue. 

To determine the zone in which a transition from laminar flow to turbulent flow occurs one must 
start from the multiparametric system of gas-dynamic equations (15), adding to them viscous terms 
calculated in [15] and other papers. 

The new theory of turbulence undoubtedly needs to be checked further on other more complex aero- 
dynamic processes and used to solve important basic problems in science and technology. 
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